
IARJSET ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

 

                  International Advanced Research Journal in Science, Engineering and Technology 
ISO 3297:2007 Certified 
Vol. 3, Issue 8, August 2016 

 

Copyright to IARJSET                                           DOI 10.17148/IARJSET.2016.3830                                                       166 

A Comparative Study on Robust Regression 

Methods 
 

Guem Mi Lee
1
, Kyupil Yeon

2
, Hyeuk Kim

2
 

Manager, Lucis Co., Seoul, Korea
 1
 

Assistant Professor, Department of Applied Statistics, Hoseo University, Asan, Korea
 2
 

 

Abstract: The research should analyse data after removing the outliers which have high influences or reducing the 

effects of influential points. The paper introduces the robust estimation methods to reduce the influences of outliers in 

regression modelling. We describe LTS estimator, LMS estimator, M-estimator, S-estimator, and MM-estimator among 

various robust estimation methods. Then, we make an experiment for real data and investigate the performances for 

several methods. The result shows that the robust estimation methods with reduction of influential points perform better 

than ordinary least squares method in regression analysis.  
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I. INTRODUCTION 

 

We want that the regression model is not excessively 

determined by a few observations when fitting data into a 

model. In other words, it is difficult to build a robust 

model if a few points influence a fitted model such as the 

estimated regression coefficients, the fitted value, and t-

value. There are two methods to solve the phenomenon: 

removal of the points and reduction of the effects of the 

points [1]. The least trimmed of squares, the least median 

of squares, M-estimation, S-estimation, and MM-

estimation are described in the paper and the performances 

of the two methods are compared with real data. We 

explain several methods in the second section and 

compare several robust regression methods with real data 

in the third section. In the last section, we draw a 

conclusion. 
 

II. ROBUST REGRESSION 
 

There is the linear regression model.  
 

𝑦𝑖 = 𝑥′𝑖𝛽 + 휀𝑖    (i = 1,… , n) 
 

Where 𝑥𝑖  is the p-dimensional explanatory vector, 𝑦𝑖  is the 

response variable and β = (𝛽1 ,𝛽2,… ,𝛽𝑝)′isthe regression 

coefficient. 휀𝑖’s the error terms that are independent and 

follows a standard normal distribution respectively. The 

general method in regression analysis is to minimize the 

sum of the squared error terms, which is the least squares 

method, namely LS. In the approach, the estimates of the 

regression coefficients are as follows 
 

𝛽 𝐿𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  𝑟𝑖 𝛽 
2

𝑛

𝑖=1

   , 𝑟𝑖 𝛽 = 𝑦𝑖 − 𝑥 ′
𝑖𝛽 

= 𝑎𝑟𝑔𝑚𝑖𝑛𝛽 (𝑦𝑖 − 𝑥 ′
𝑖𝛽)′(𝑦𝑖 − 𝑥 ′

𝑖𝛽) 

= (X′X)−1𝑋′𝑦 
 

The above estimates are known as BLUE(Best Linear 

Unbiased Estimator). 

 

 

The squared loss function is not bounded. Therefore, it is 

possible that the regression line has a severe problem if 

there are a few outliers which have very large absolute 

residuals. Figure 1 is an example for the situation. The 

right picture in Figure 1 has one outlier, but it is a big 

influential point and biases a regression line. In other 

words, only one observation can break down a regression 

line and the regression line which is fitted by such 

observations has a tendency to make the residuals of 

normal points large.  

 

 
Fig. 1Regression lines for regular situation and the 

situation with an outlier 

 

Several robust regression methods are developed to 

improve defect, which is described above. Above.  

 

A. Least Trimmed of Squares(LTS) 

The method of the least squares is to minimize the 

variance of the residuals. The demerit of the approach is 

that it can be affected by the observation with large 

residual. A robust estimate is developed to solve the 

demerit. The least trimmed of squares [2] uses a part of 

observations instead of all observations to calculate the 

variance of the residuals. The estimate of the least 

trimmed of squares minimizes the following objective 

function.  
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𝛽 𝐿𝑇𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  𝑟𝑖(𝛽)2

𝑖∈𝐻

 

 

where H ∈ {1,… , n} and  H = h < 𝑛. h is the number of 

the observations which are considered in the least trimmed 

of squares. It is described in other form as follows. 

 

𝛽 𝐿𝑇𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  𝑟(𝑖)
2

ℎ

𝑖=1

 

 

where 𝑟(1)
2 ≤ 𝑟 2 

2 ≤ ⋯ ≤ 𝑟(𝑛)
2  are the order statistics of the 

squares of residuals. 

The breakdown point of 𝛽 𝐿𝑇𝑆  is 
 𝑛 2  −𝑝+1

𝑛
 when h =

 𝑛 2  + 1 .The estimate of least trimmed of squares is 

difficult to be used as the independent estimate since it has 

a high breakdown point. That is, it is very robust for an 

outlier but a low relative efficiency. However, it is useful 

for an initial value for GM-estimate [3] or diagnostic plot 

for an outlier. 

 

B. Least Median of Squares(LMS) 

The least median of squares is to minimize the median of 

observations instead of the mean. The median is the more 

robust measure than the mean in statistics which describe 

the central tendency of observations. The estimate of the 

least median of squares minimizes the following objective 

function.  

 

𝛽 𝐿𝑇𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽𝑚𝑒𝑑{𝑟𝑖 𝛽 
2: 𝑖 = 1,… ,𝑛} 

 

The breakdown point of the estimate of the least median 

squares is 50 percent like the estimate’s of the least 

trimmed of squares.  However, a relative gradual 

efficiency is at most 37 percent and the speed of the 

convergence is 𝑛−1 3  in the estimate of the least trimmed 

of squares. It plays an important role in the calculation of 

an MM-estimator since it provides the initial estimate of 

an residual.  

 

C. M-estimator 

Huber(1973) [4] proposed M-estimator which minimizes 

the objective function.  

 

𝛽 𝑀 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  𝜌 
𝑟𝑖(𝛽)

𝜎 
 

𝑛

𝑖=1

 

 

We derive the p equations if we differentiate the above 

objective function about 𝛽𝑗  and set the corresponding 

result to 0. 

 

 𝜓 
𝑟𝑖(𝛽)

𝜎 
 𝑥𝑖𝑗 = 0  (𝑗 = 1,… , 𝑝)

𝑛

𝑖=1

 

 

Moreover, we get the following equation if the weight 𝑤𝑖  

is defined as 𝑤𝑖 = 𝜓 𝑟𝑖(𝛽) 𝜎    𝑟𝑖(𝛽) 𝜎    . 

 𝑤𝑖 𝑦𝑖 − 𝑥𝑖
′𝛽 𝑥𝑖 = 0

𝑛

𝑖=1

 

 

The iteratively reweighted least squares (IRWLS) is 

applied to find the solution of the above equation and it’s 

algorithm is described below.  

 

Iteratively Reweighted Least Squares (IRWLS):  

 

Step 1: Calculate the initial estimate 𝛽 (0)through the least 

squares.  

Step 2: Calculate the initial residual 𝑟𝑖
(0)

 by using 𝛽 (0) 

Step 3: Calculate the weight 𝑤𝑖
(0)

 by using 𝑟𝑖
(0)

. 

Step 4: Calculate the estimate of the regression coefficient, 

𝛽 (1), by weight 𝑤𝑖
(0)

through the weighted least squares. In 

matrix notation, 𝛽 (1)  is 𝛽 (1) =  𝑋𝑇𝑊𝑋 −1𝑋𝑇𝑊 when 

𝑊 = diag(𝑤𝑖)the diagonal matrix whose elements are the 

corresponding weights is. 

Step 5: Calculate 𝛽 (2) by using 𝛽 (1) from Step 1 to Step 4.  

Step 6: Repeat the above procedures until 𝛽  is stabilized.  

Gschwandtner and Filzmoser [5] describes ρ function, ψ, 

and the weight w which are used generally.The breakdown 

point of M-estimator is known as 1 𝜌  and it has a very 

small breakdown point when there are many explanatory 

variables. 

 

D. S-estimator 

S-estimator has been developed by Rousseeuw and Yohai 

in 1984 [6]. It is the value which minimizes the robust 

scale parameters about the residuals. 

 

𝛽 𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽𝜎 (𝑟1 𝛽 ,… , 𝑟𝑛 𝛽 ) 

 

𝜎  is the solution of the following equation.  

 

1

𝑛
 𝜌 

𝑟𝑖(𝛽)

𝜎 
 

𝑛

𝑖=1

= δ  , δ = 𝐸Φ 𝜌(𝑟)  

 

where Φ is a standard normal distribution. 

S-estimator 𝛽 𝑆also satisfies the following equation.  

 

𝛽 𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  𝜌 
𝑟𝑖(𝛽)

𝜎 
 

𝑛

𝑖=1

 ,𝜎 = 𝜎 (𝑟1 𝛽𝑆 ,… , 𝑟𝑛 𝛽𝑆 ) 

 

We differentiate the equation when ψ = ρ′  and set a 

differential equation to 0. The following equation for 

estimation is constructed and is solved by the iteratively 

reweighted least squares.  

 

 𝜓 
𝑟𝑖(𝛽 𝑆)

𝜎 
 𝑥𝑖

𝑛

𝑖=1

= 0 

1

𝑛
 𝜌 

𝑟𝑖(𝛽 𝑆)

𝜎 
 

𝑛

𝑖=1

= 𝛿 
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S-estimator is built to have a high breakdown point. It’s 

breakdown point 𝜖𝑛
∗  is given below when a function ρ 

satisfies from (R1) to (R3) [6].  

 

(R1) ρ  is a symmetric function and differential 

continuously. Also, ρ 0 = 0. 

 

(R2) ρ  is an increasing function with the interval [0, c]. 

There exists c such that ρ becomes a constant function in 

the interval [c, ∞]. 

(R3) 
𝐸Φ(𝜌)

𝜌(𝑐)
=

1

2
 

 

The breakdown point 𝜖𝑛
∗  of S-estimator is 𝜖𝑛

∗ =

  
𝑛

2
 − 𝑝 + 2 2 . 

 

We figure out that the gradual breakdown point is 50 

percent when n goes to infinity. S-estimator has a low 

gradual relative efficiency if the constant c is determined 

for a high breakdown point, and a high gradual relative 

efficiency if the constant c  is determined for a low 

breakdown point. Therefore, S-estimator is usually used 

for the initial estimate of MM-estimator. 

 

E. MM-estimator 

Yohai(1987) [7] proposed MM-estimator which was 

robust and efficient. It is made of combining M-estimator 

and S-estimator. MM means the procedure for finding M-

estimator is used at least two times while searching for the 

final estimate. Suppose that 𝛽 (0)isS-estimator and 𝜎 is M-

estimator about the corresponding scale parameter. MM-

estimator is defined as below. 

 

𝛽 𝑀𝑀 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  𝜌 
𝑟𝑖(𝛽)

𝜎 
 

𝑛

𝑖=1

 

 

The solution of theabove equation is calculated with the 

initial value 𝛽 (0)  through the iteratively reweighted least 

squares. We describe the specific procedure for the 

solution as follows. 

 

Step 1: Compute an initial regression estimate 𝛽 (0) 

through S-estimator using Huber or Tukey’s biweight 

function.  

Step 2: Compute M-estimator 𝜎 about scale parameter by 

𝛽 (0). 

Step 3: Compute M-estimator using β 
(0)

 and 𝜎  through 

method of weighted least squares. 

 

 𝜔𝑖  
𝑟𝑖

(0)

𝜎 
 𝑥𝑖

𝑛

𝑖=1

= 0 

 

where 𝜔𝑖  is Huber or Tukey’s biweight. 

Step 4: the weight is recalculated by the residual from Step 

3. 

Step 5: We fix the scale parameter from Step 2 and repeat 

Step 3 and Step 4 until the value converges. 

III. EXPERIMENTS 

 

The real data is used for comparison of several regression 

methods. De Long and Summers [8] have studied the 

growth of 61 countries in 1991. The dataset consists of one 

response variable which is GDP(growth domestic product) 

and the four explanatory variables. They are LFG(labor 

force growth), GAP(GDP per worker gap), 

EQP(equipment share), and NEQ(non-equipment share). 

 

A. Ordinary Regression by BLUE 

Table 1 describes the result of the multiple regression. 

 

Var. 
U.R.C. 

S.R.C. t P VIF 
B S.E. 

C. -0.01 0.01 - -1.39 0.17 - 

LFG -0.03 0.20 -0.02 -0.15 0.88 1.33 

GAP 0.02 0.01 0.29 2.21 0.03 1.41 

EQP 0.27 0.07 0.51 4.06 <0.01 1.32 

NEQ 0.06 0.04 0.23 1.79 0.08 1.39 

Table 1 Result of the multiple regression analysis through 

the least squares 

 

We explain several abbreviations in the first column in 

Table 1. Var. is the explanatory variable in regression 

model. U.R.C. is an Unstandardized regression coefficient 

and S.R.C. is a standardized regression coefficient. t and P 

means t statistic and p-value respectively. VIF describes a 

variance inflation factor, which is available to check the 

degree of the multicollinearity. C. in the second column is 

an abbreviation of the constant in the regression model. 

The model is valid since F statistic for model is 7.17 and 

the corresponding p-value is less than 0.001. The 

explanatory variables describe the model about 33.9% 

since 𝑅2  is 0.339. The effective variables are GAP and 

EQP based on 5 percent of the significance level. Growth 

data also has no collinearity since all VIF’s for 

explanatory variables are less than 10. 

 

B. Robust Regression by removing a few influential 

points 

We use Cook’s D plots to figure out the influential point. 

 

 
Table 2 The index plots for Cook’s D 

 

Cook’s D statistic is the measure which standardizes the 

change of the vector of the least squared estimation when 

one observation is removed. We consider that the 

observation is influential if it’s Cook’s D statistic is high 

[1]. The standard value for deciding an influential point is 
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usually 
2(𝑝+1)

𝑛
 where 𝑝  is the number of explanatory 

variables and 𝑛 is the number of observations. Therefore, 

the standard value in this experiments is 
2(4+1)

61
= 0.16 and 

the observation whose index is 60 is an influential point 

from Table 2. 

 

 
Table 3 The index plots for DFFITS 

 

Table 3 describes one of the statistical methods which 

diagnoses the influences of observations. DFFITS was 

developed by Belsley, Kuh and Welsh [9].  DFFITS 

statistic is the measure which standardizes the change of 

the fitted value 𝑦 𝑖 . An observation is considered that it 

influences the expected estimate of 𝑦𝑖 if it’s absolute value 

of DFFITS is very large. The general standard value is 

2 
𝑝+1

𝑛−𝑝−1
 where 𝑝 is the number of explanatory variables 

and 𝑛  is the numberof observations. Therefore, the 

standard value for DFFITS is 2 
4+1

61−4−1
= 0.60  and 

theinfluential points are the observations whose index are 

5, 7, 9, 17, 23, 35, 60, and 61. 

We determine that the observations whose index are 1, 5, 

7, 8, 9, 17, 23, 27, 35, 35, 57, 59, 60, and 61 are influential 

from two plots. We construct a multiple regression model 

after removing the influential points. The model is also 

valid since F statistic is 6.98 and the corresponding 

significance probability is less than 0.001.  

 

Var. 
U.R.C. 

S.R.C. t P 
B S.E. 

C. -0.01 0.01 - -1.08 0.29 

LFG -0.20 0.21 -0.17 -0.96 0.34 

GAP 0.02 0.01 0.35 1.98 0.05 

EQP 0.08 0.09 0.16 0.95 0.35 

NEQ 0.15 0.03 0.63 4.29 <0.01 

Table 4 Result of the multiple regression analysis by 

removing influential points 

 

𝑅2for the regression model is 0.405. NEQ are statistically 

significant based on 5 percent of the significance level.  

In comparing two multiple regression models, 𝑅2  is 

increased about 0.066 and the explanatory variables which 

are statistically significant are changed. GAP and EQP are 

statistically significant in an ordinary regression model, 

but are not any more after removing influential points. 

NEQ is not statistically significant in an ordinary 

regression model, but is a significant variable after 

removing influential points. 

 

C. Robust Regression by Least Trimmed of Squares (LTS) 

We introduce five robust regression methods which reduce 

the effects of the influential points. We conduct 

experiments for LTS and MM-estimator among five 

methods. 

 

Var. 
U.R.C. 

χ2 P 
B S.E. 

C. -0.02 0.01 5.65 0.02 

LFG 0.05 0.18 0.06 0.80 

GAP 0.03 0.01 8.89 0.00 

EQP 0.28 0.06 23.60 <0.01 

NEQ 0.09 0.03 7.30 0.01 

Table 5Result of the multiple regression analysis by Least 

Trimmed of Squares 
 

Table 5 describes the multiple regression model by Least 

Trimmed of Squares.𝑅2 for the model is 0.741 and the 

value is much higher than 0.339 and 0.405 for the above 

models respectively. It is not because the model fits very 

well but because the formula for r-squared is different. 

GAP, EQP, and NEQ are statistically significant. 

 

D. Robust Regression by MM-estimator 

Table 6 describes the multiple regression model by MM-

estimator.The explanatory variables describe the model 

about 31.1% since 𝑅2  is 0.311. Three variables such as 

GAP, EQP, NEQ are statistically significant like we apply 

the robust regression model by Least Trimmed of Squares. 

There are two differences when we remove influential 

points and reduce the effects of influential points. 

 

Var. 
U.R.C. 

χ2 P 
B S.E. 

C. -0.03 0.01 6.70 0.01 

LFG 0.12 0.19 0.39 0.53 

GAP 0.03 0.01 8.80 0.00 

EQP 0.30 0.06 22.37 <0.01 

NEQ 0.09 0.03 6.97 0.01 

Table 6 Result of the multiple regression analysis by MM-

estimator 
 

First, the explanatory variables which are statistically 

significant are different as we already mention in front. 

NEQ is the unique explanatory variable which is 

statistically significant when we remove influential points. 

On the other hand, there are three statistically significant 

variables for reducing the effects of influential points. 

Secondly, the values of the regression coefficients are 

changed. For example, the regression coefficient for LFG 

is negative for removing influential points and it becomes 

positive for reducing the effects of influential points. 

 

IV. CONCLUSION 

 

We introduce the ordinary regression and the robust 

regression which is useful when there is an outlier in the 

paper. There are two approaches to handle the influential 
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points. The first method is to remove influential points and 

the second method is to reduce the effects of influential 

points in constructing the regression model. We compare 

the results of four approaches for the real data. We figure 

out that the different approaches yield the differences in 

valid variables and the coefficients of regression through 

the experiment. From the experiment, we can make a 

conclusion that the method which reduces the effects of 

influential points is more proper since it finds the more 

valid explanatory variables. It is very hard to find 

influential points or outliers through the least squared 

method in regression analysis. Therefore, we recommend 

the robust regression model with reduction of influential 

points when we handle data without cleansing and suspect 

that there are a few outliers. 
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